Optical imaging in galagos reveals parietal-frontal circuits underlying motor behavior.

نویسندگان

  • Iwona Stepniewska
  • Robert M Friedman
  • Omar A Gharbawie
  • Christina M Cerkevich
  • Anna W Roe
  • Jon H Kaas
چکیده

The posterior parietal cortex (PPC) of monkeys and prosimian galagos contains a number of subregions where complex, behaviorally meaningful movements, such as reaching, grasping, and body defense, can be evoked by electrical stimulation with long trains of electrical pulses through microelectrodes. Shorter trains of pulses evoke no or simple movements. One possibility for the difference in effectiveness of intracortical microstimulation is that long trains activate much larger regions of the brain. Here, we show that long-train stimulation of PPC does not activate widespread regions of frontal motor and premotor cortex but instead, produces focal, somatotopically appropriate activations of frontal motor and premotor cortex. Shorter stimulation trains activate the same frontal foci but less strongly, showing that longer stimulus trains do not produce less specification. Because the activated sites in frontal cortex correspond to the locations of direct parietal-frontal anatomical connections from the stimulated PPC subregions, the results show the usefulness of optical imaging in conjunction with electrical stimulation in showing functional pathways between nodes in behavior-specific cortical networks. Thus, long-train stimulation is effective in evoking ethologically relevant sequences of movements by activating nodes in a cortical network for a behaviorally relevant period rather than spreading activation in a nonspecific manner.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Microstimulation reveals specialized subregions for different complex movements in posterior parietal cortex of prosimian galagos.

Posterior parietal cortex of prosimian galagos consists of a caudal half characterized by connections with visual cortex and a rostral half connected with motor, premotor, and visuomotor areas of frontal cortex. When 500-ms trains of electrical pulses were used to stimulate microelectrode sites throughout posterior parietal cortex, movements were elicited only from the rostral half. The movemen...

متن کامل

A Functional Imaging Study of Self-Regulatory Capacities in Persons Who Stutter

Developmental stuttering is a disorder of speech fluency with an unknown pathogenesis. The similarity of its phenotype and natural history with other childhood neuropsychiatric disorders of frontostriatal pathology suggests that stuttering may have a closely related pathogenesis. We investigated in this study the potential involvement of frontostriatal circuits in developmental stuttering. We c...

متن کامل

Somatosensory cortex of prosimian Galagos: physiological recording, cytoarchitecture, and corticocortical connections of anterior parietal cortex and cortex of the lateral sulcus.

Compared with our growing understanding of the organization of somatosensory cortex in monkeys, little is known about prosimian primates, a major branch of primate evolution that diverged from anthropoid primates some 60 million years ago. Here we describe extensive results obtained from an African prosimian, Galago garnetti. Microelectrodes were used to record from large numbers of cortical si...

متن کامل

On a basal ganglia role in learning and rehearsing visual-motor associations

Fronto-striatal circuitry interacts with the midbrain dopaminergic system to mediate the learning of stimulus-response associations, and these associations often guide everyday actions, but the precise role of these circuits in forming and consolidating rules remains uncertain. A means to examine basal ganglia circuit contributions to associative motor learning is to examine these process in a ...

متن کامل

Cortical mechanisms underlying the organization of goal-directed actions and mirror neuron-based action understanding.

Our understanding of the functions of motor system evolved remarkably in the last 20 years. This is the consequence not only of an increase in the amount of data on this system but especially of a paradigm shift in our conceptualization of it. Motor system is not considered anymore just a "producer" of movements, as it was in the past, but a system crucially involved in cognitive functions. In ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 108 37  شماره 

صفحات  -

تاریخ انتشار 2011